Tidy Data with Pandas

Last updated on 2024-11-05 | Edit this page

Estimated time: 100 minutes

Overview

Questions

  • What are the benefits of transforming data into a tidy format for analysis?
  • How does the melt() function in pandas facilitate data tidying?
  • What are some practical challenges when working with real-world datasets in Python, and how can they be addressed?

Objectives

  • Identify the characteristics of tidy data and explain its benefits, listing the three principles and discussing how it facilitates data analysis during a review session.
  • Use pandas functions like concat(), melt(), and data filtering to manipulate and clean a complex dataset, successfully combining multiple files into a single DataFrame and reshaping it using melt()

Tidy Data in Pandas


Let’s import the pickle file that contains all of our Chicago public library circulation data in a single DataFrame. We can use the Pandas .read_pickle() method to do so.

PYTHON

import pandas as pd

df = pd.read_pickle('data/all_years.pkl')
df.head()
branch address city zip code january february march april may june july august september october november december ytd year
0 Albany Park 5150 N. Kimball Ave. Chicago 60625.0 8427 7023 9702 9344 8865 11650 11778 11306 10466 10997 10567 9934 120059 2011
1 Altgeld 13281 S. Corliss Ave. Chicago 60827.0 1258 708 854 804 816 870 713 480 702 927 787 692 9611 2011
2 Archer Heights 5055 S. Archer Ave. Chicago 60632.0 8104 6899 9329 9124 7472 8314 8116 9177 9033 9709 8809 7865 101951 2011
3 Austin 5615 W. Race Ave. Chicago 60644.0 1755 1316 1942 2200 2133 2359 2080 2405 2417 2571 2233 2116 25527 2011
4 Austin-Irving 6100 W. Irving Park Rd. Chicago 60634.0 12593 11791 14807 14382 11754 14402 14605 15164 14306 15357 14069 12404 165634 2011

PYTHON

df.tail()
branch address city zip code january february march april may june july august september october november december ytd year
958 Chinatown 2100 S. Wentworth Ave. Chicago 60616.0 4795 4258 5316 5343 4791 5367 5477 5362 4991 4847 4035 3957 58539 2022
959 Brainerd 1350 W. 89th St. Chicago 60620.0 255 264 370 386 399 421 337 373 361 276 256 201 3899 2022
960 Brighton Park 4314 S. Archer Ave. Chicago 60632.0 1394 1321 1327 1705 1609 1578 1609 1512 1425 1603 1579 1278 17940 2022
961 South Chicago 9055 S. Houston Ave. Chicago 60617.0 496 528 739 775 587 804 720 883 681 697 799 615 8324 2022
962 Chicago Bee 3647 S. State St. Chicago 60609.0 799 543 709 803 707 931 778 770 714 835 718 788 9095 2022

Let’s take a moment to discuss the setup of our DataFrame. It is structured in what is known as a wide format. This format displays an extensive amount of data directly on the screen, with each month’s circulation counts spread across the columns in a pivoted manner. This layout makes it easier to read and manually manipulate the data in a spreadsheet and because of this, is often the default output for periodic reporting systems like integrated library systems.

However, this wide format can pose challenges when working with data analysis tools like Pandas. For instance, if we need to identify all the library branches where circulation exceeded 10,000 in any given month, we would have to individually check each column dedicated to a month, which can be quite cumbersome.

To address this we can reshape our data in a long format. This is sometimes called un-pivoting the data, and in our case the month columns will become a single variable in the dataset.

Tidy Data


Tidy data is a standard way of organizing data values within a dataset, making it easier to work with. Here are the key principles of tidy data: 1. Every column holds a single variable, like “month” or “temperature.” 2. Every row represents a single observation, like circulation counts by branch and month. 3. Every cell contains a single value.

The image below might help orient us to the concept of tidy data.

image showing variables in columns, observations in rows, and values in cellssan
Tidy Data

R for Data Science 12.1

Benefits of Tidy Data

Transforming our data into a tidy data format provides several advantages: - Python operations, such as visualization, filtering, and statistical analysis libraries, work better with data in a tidy format. - Tidy data makes transforming, summarizing, and visualizing information easier. For instance, comparing monthly trends or calculating annual averages becomes more straightforward. - As datasets grow, tidy data ensures that they remain manageable and analyses remain accurate.

Making Our Data Tidy


A good step towards tidying our data would be to consolidate the separate month columns into a column called month, and the circulation counts into another column called circulation_counts. This simplifies our data and aligns with the principles of tidy data.

To achieve this transformation, we can use a Pandas function called melt(). This function reshapes the data from wide to long format, where each row will represent one month’s circulation data for a branch. Let’s look at the help for melt first.

PYTHON

help(pd.melt)

Now, let’s tidy our data. We’ll create a new dataframe called df_long and use melt to reshape. melt essentially melts down our columns into rows.

PYTHON

df_long = df.melt(id_vars=['branch', 'address', 'city', 'zip code', 'ytd', 'year'],
                    value_vars=['january', 'february', 'march', 'april', 'may', 'june', 
                                'july', 'august', 'september', 'october', 'november', 'december'],
                    var_name='month', value_name='circulation')

In the above code we use id_vars to list the columns we do not want to melt. We then identify the columns we do want to melt into rows in the value_vars parameter. var_name is the variable name for the columns that will be transformed into rows. value_names is the measured variable, circulation in our case. Let’s now look at the new structure of our data.

PYTHON

df_long
branch address city zip code ytd year month circulation
0 Albany Park 5150 N. Kimball Ave. Chicago 60625.0 120059 2011 january 8427
1 Altgeld 13281 S. Corliss Ave. Chicago 60827.0 9611 2011 january 1258
2 Archer Heights 5055 S. Archer Ave. Chicago 60632.0 101951 2011 january 8104
3 Austin 5615 W. Race Ave. Chicago 60644.0 25527 2011 january 1755
4 Austin-Irving 6100 W. Irving Park Rd. Chicago 60634.0 165634 2011 january 12593
11551 Chinatown 2100 S. Wentworth Ave. Chicago 60616.0 58539 2022 december 3957
11552 Brainerd 1350 W. 89th St. Chicago 60620.0 3899 2022 december 201
11553 Brighton Park 4314 S. Archer Ave. Chicago 60632.0 17940 2022 december 1278
11554 South Chicago 9055 S. Houston Ave. Chicago 60617.0 8324 2022 december 615
11555 Chicago Bee 3647 S. State St. Chicago 60609.0 9095 2022 december 788

Ok, let’s look at the unique branches in our long DataFrame:

PYTHON

df_long['branch'].unique()

OUTPUT

array(['Albany Park', 'Altgeld', 'Archer Heights', 'Austin',
       'Austin-Irving', 'Avalon', 'Back of the Yards', 'Beverly',
       'Bezazian', 'Blackstone', 'Brainerd', 'Brighton Park',
       'Bucktown-Wicker Park', 'Budlong Woods', 'Canaryville',
       'Chicago Bee', 'Chicago Lawn', 'Chinatown', 'Clearing', 'Coleman',
       'Daley, Richard J. - Bridgeport', 'Daley, Richard M. - W Humboldt',
       'Douglass', 'Dunning', 'Edgebrook', 'Edgewater', 'Gage Park',
       'Galewood-Mont Clare', 'Garfield Ridge', 'Greater Grand Crossing',
       'Hall', 'Harold Washington Library Center', 'Hegewisch',
       'Humboldt Park', 'Independence', 'Jefferson Park', 'Jeffery Manor',
       'Kelly', 'King', 'Legler Regional', 'Lincoln Belmont',
       'Lincoln Park', 'Little Village', 'Logan Square', 'Lozano',
       'Manning', 'Mayfair', 'McKinley Park', 'Merlo', 'Mount Greenwood',
       'Near North', 'North Austin', 'North Pulaski', 'Northtown',
       'Oriole Park', 'Portage-Cragin', 'Pullman', 'Roden', 'Rogers Park',
       'Roosevelt', 'Scottsdale', 'Sherman Park', 'South Chicago',
       'South Shore', 'Sulzer Regional', 'Thurgood Marshall', 'Toman',
       'Uptown', 'Vodak-East Side', 'Walker', 'Water Works',
       'West Belmont', 'West Chicago Avenue', 'West Englewood',
       'West Lawn', 'West Pullman', 'West Town', 'Whitney M. Young, Jr.',
       'Woodson Regional', 'Wrightwood-Ashburn', 'Little Italy',
       'West Loop'], dtype=object)

Alright! Now that we have the data tidied what can we do with it? Let’s look at which branches circulated over 10,000 items in any given month. We can filter the df_long DataFrame to only show rows that have a number greater than 10,000 in the circulation column.

PYTHON

df_long[df_long['circulation'] > 10000]
branch address city zip code ytd year month circulation
4 Austin-Irving 6100 W. Irving Park Rd. Chicago 60634.0 165634 2011 january 12593
12 Bucktown-Wicker Park 1701 N. Milwaukee Ave. Chicago 60647.0 173396 2011 january 13113
13 Budlong Woods 5630 N. Lincoln Ave. Chicago 60659.0 160271 2011 january 12841
17 Chinatown 2353 S. Wentworth Ave. Chicago 60616.0 158449 2011 january 14027
24 Edgebrook 5331 W. Devon Ave. Chicago 60646.0 129288 2011 january 10231
11373 Harold Washington Library Center 400 S. State St. Chicago 60605.0 276878 2020 december 20990
11420 Sulzer Regional 4455 N. Lincoln Ave. Chicago 60625.0 260163 2021 december 21671
11454 Harold Washington Library Center 400 S. State St. Chicago 60605.0 271811 2021 december 21046
11532 Harold Washington Library Center 400 S. State St. Chicago 60605.0 273406 2022 december 20480
11545 Sulzer Regional 4455 N. Lincoln Ave. Chicago 60625.0 301340 2022 december 21258

1434 rows × 8 columns

We can look at specific columns:

PYTHON

df_long[['branch', 'circulation']]
branch circulation
0 Albany Park 8427
1 Altgeld 1258
2 Archer Heights 8104
3 Austin 1755
4 Austin-Irving 12593
11551 Chinatown 3957
11552 Brainerd 201
11553 Brighton Park 1278
11554 South Chicago 615
11555 Chicago Bee 788

11556 rows × 2 columns

We can sort our table using .sort_values() to see the branches with the highest circulation per month:

PYTHON

df_long.sort_values('circulation', ascending=False)
branch address city zip code ytd year month circulation
1957 Harold Washington Library Center 400 S. State St. Chicago 60605.0 966720 2011 march 89122
2920 Harold Washington Library Center 400 S. State St. Chicago 60605.0 966720 2011 april 88527
2999 Harold Washington Library Center 400 S. State St. Chicago 60605.0 937649 2012 april 87689
6772 Harold Washington Library Center 400 S. State St. Chicago 60605.0 966720 2011 august 85193
2036 Harold Washington Library Center 400 S. State St. Chicago 60605.0 937649 2012 march 84255
3623 Portage-Cragin 5108 W. Belmont Ave. Chicago 60641.0 36262 2020 april 0
3622 Manning 6 S. Hoyne Ave. Chicago 60612.0 3325 2020 april 0
3621 Daley, Richard J. - Bridgeport 3400 S. Halsted St. Chicago 60608.0 37045 2020 april 0
3620 Canaryville 642 W. 43rd St. Chicago 60609.0 4120 2020 april 0
3577 Merlo 644 W. Belmont Ave. Chicago 60657.0 14637 2019 april 0

11556 rows × 8 columns

What if we want to tally up the total circulation for each branch over all years and also see the mean circulation?

PYTHON

df_long.groupby('branch')['circulation'].agg(total_circulation='sum', mean_circulation='mean')
total_circulation mean_circulation
branch
Albany Park 1024714 7116.069444
Altgeld 68358 474.708333
Archer Heights 803014 5576.486111
Austin 200107 1389.631944
Austin-Irving 1359700 9442.361111
West Pullman 295327 2050.881944
West Town 922876 6408.861111
Whitney M. Young, Jr. 259680 1803.333333
Woodson Regional 823793 5720.784722
Wrightwood-Ashburn 302285 2099.201389

82 rows × 2 columns

  1. df.groupby('branch'): This groups the data by the ‘branch’ column so that all entries in the DataFrame with the same library branch are grouped together. (This is similar to the SQL GROUP BY statement or the group_by function in dplyr in R.)
  2. ['circulation']: After grouping the data by branch, this specifies that subsequent operations should be performed on the ‘circulation’ column.
  3. .agg(...): The agg function is used to apply one or more aggregation operations to the grouped data. Inside the agg function:
    • total_circulation='sum': This creates a new column named ‘total_circulation’ where each entry is the sum of ‘circulation’ for that branch. It totals up all circulation figures within each branch.
    • mean_circulation='mean': This creates a new column named ‘mean_circulation’ where each entry is the average ‘circulation’ for that branch. It calculates the mean circulation figures for each branch.

If we want to group by more than one variable, we can list those column names in the .groupby() function.

PYTHON

df_long.groupby(['branch', 'month'])['circulation'].agg(['sum', 'mean'])
sum mean
branch month
Albany Park april 79599 6633.250000
august 91416 7618.000000
december 77849 6487.416667
february 76747 6395.583333
january 85952 7162.666667
Wrightwood-Ashburn march 25817 2151.416667
may 22049 1837.416667
november 24124 2010.333333
october 27345 2278.750000
september 25692 2141.000000

984 rows × 2 columns

Adding a Date Column


In order to plot this data over time in the data visualization we need to do three things to prepare it. First, we need to combine the year and month columns into its own column. Second, convert the new date column to a datetime objec using the Pandas to_datetime function. Third, we assign the date column as our index for the data. These steps will set up our data for plotting.

PYTHON

df_long['date'] = df_long['year'] + '-' + df_long['month']

This will create a new column in our data frame by adding our year and month together separated by a -. This setup is not sufficient for us to use .to_datetime() to convert the column to something Python and Pandas knows is a date.

PYTHON

df_long['date'] = pd.to_datetime(df_long['date'], format='%Y-%B')

pd.to_datetime() will do the conversion, but we need to tell it how we have our date formatted. In this case we have year and month name spelled out. To find more format codes, see https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior.

If we take a look at the date column, we’ll see that datetime automatically adds a day (always 01) in the absence of any specific day input.

PYTHON

df_long['date']

OUTPUT

0       2011-01-01
1       2011-01-01
2       2011-01-01
3       2011-01-01
4       2011-01-01
           ...
11551   2022-12-01
11552   2022-12-01
11553   2022-12-01
11554   2022-12-01
11555   2022-12-01
Name: date, Length: 11556, dtype: datetime64[ns]

PYTHON

df_long.info()

OUTPUT

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11556 entries, 0 to 11555
Data columns (total 9 columns):
 #   Column       Non-Null Count  Dtype
---  ------       --------------  -----
 0   branch       11556 non-null  object
 1   address      7716 non-null   object
 2   city         7716 non-null   object
 3   zip code     7716 non-null   float64
 4   ytd          11556 non-null  int64
 5   year         11556 non-null  object
 6   month        11556 non-null  object
 7   circulation  11556 non-null  int64
 8   date         11556 non-null  datetime64[ns]
dtypes: datetime64[ns](1), float64(1), int64(2), object(5)
memory usage: 812.7+ KB

That worked! Now, we can make the datetime column the index of our DataFrame. In the Pandas episode we looked at Pandas default numerical index, but we can also use .set_index() to declare a specific column as the index of our DataFrame. Using a datetime index will make it easier for us to plot the DataFrame over time. The first parameter of .set_index() is the column name and the inplace=True parameter allows us to modify the DataFrame without assigning it to a new variable.

PYTHON

df_long.set_index('date', inplace=True)

If we look at the data again, we will see our index will be set to date.

Let’s save df_long to use in the next episode.

PYTHON

df_long.to_pickle('data/df_long.pkl')

Tidy Data Principles

How would you reorganize the following table about research data workshops to follow the three tidy data principles?

  1. Every column holds a single variable.
  2. Every row represents a single observation.
  3. Every cell contains a single value.
Date Length Content Instructor
2023-01-15 30 min RDM, DMP CH
2023-02-02 2 hours Python, RDM CH, TD
2023-02-03 90 min Python SP

You can use each content unit (e.g., RDM, DMP, Python) as an observation, and breakdown the length of time or instructor initials to match the content unit however you like.

Year Month Day Length (min) Content Instructor
2023 01 15 20 RDM CH
2023 01 15 10 DMP CH
2023 02 02 100 Python TD
2023 02 02 20 RDM CH
2023 02 03 100 Python SP

Subsetting df_long

Using df_long, create a new DataFrame, `low_circ’, that only includes branches with circulation numbers lower than 500 per month. When you create a subset DataFrame, show the following columns: branch, circulation, month, and year. Next, eliminate the rows when the circulation is equal to 0.

PYTHON

low_circ = df_long[_________[_________] __ 500]
low_circ = _________[_________[_________] != __]
low_circ.sort_values(by='circulation', ascending=False)

PYTHON

low_circ = df_long[df_long['circulation'] < 500]
low_circ = low_circ[low_circ['circulation'] != 0]
low_circ.sort_values(by='circulation', ascending=False)

Group and aggregate for circulation by year

How would you create a subset of df_long that sums up the circulation by year across all branches? In other words you want a view of the DataFrame that includes one row for each year, and columns for ‘year’ and ‘sum’, the latter of which shows the sum of circulation for all branches in each year.

PYTHON

df_long.groupby(['year'])['circulation'].agg(['sum'])
year sum
2011 7774198
2012 7598080
2013 6894958
2014 6406512
2015 5953920
2016 5696456
2017 5305624
2018 4989239
2019 4785108
2020 2726156
2021 3184327
2022 3342472

Key Points

  • In tidy data each variable forms a column, each observation forms a row, and each type of observational unit forms a table.
  • Using pandas for data manipulation to reshape data is fundamental for preparing data for analysis.